
Chapter 1

Two-parameter splines

The broad goal of this work is to find the best spline, or at least provide a menu of best choices, each suited to a
specific requirement. In attempting to characterize the space of all splines, including making a taxonomy of existing
splines in the literature, a remarkable number share this property:

A two-parameter spline is defined as one for which each curve segment between two knots is uniquely
determined by the two angles between tangent and chord at the endpoints of the segment.

Examples of two-parameter splines include the Minimum Energy Curve, the Euler spiral spline, Mehlum’s kurgla
1, Hobby’s spline, IKARUS, and Séquin’s circle spline. Note that the count of parameters excludes the scaling,
rotation, and translation required to get the curve segment to coincide with the two endpoints—those additional
parameters

Any given two-parameter spline can be characterized by two properties: the family of curves parameterized by the
endpoint tangent angles, and the algorithm used to determine the tangent angles. For example, the Euler spiral spline
uses a curve family with linearly varying curvature, and uses a global solver to ensure G2 continuity to determine
the tangents.

Of the two-parameter splines listed above, the MEC and the Euler spiral are extensible. In the case of the MEC,
this property follows directly from the variational statement - if adding a new on-curve point would produce a new
curve with a lower cost functional, that curve would have satisfied the old constraints as well. In addition, both
splines are based on cutting segments from a fixed generating curve, the rectangular elastica or the Euler spiral.

These properties are not simply coincidental. In fact, all two parameter, extensible splines correspond to a single
generating curve, and any generating curve can be used as the basis of a two-parameter extensible spline. The two
families, then, are essentially equivalent.

1.1 Extensible two-parameter splines have a generating curve

This section presents the argument that all extensible two-parameter splines have a generating curve.
The Minimum Energy Curve and the Euler spiral spline have a number of features in common, among them that

all segments between two adjacent control points are fully determined by two parameters. This count of parameters
does not include the scaling, rotation, and translation needed to make the two endpoints concide—just the shape of
the curve once the positions of the endpoints are fixed.

In fact, the parameter space for each such segment is described by the tangent angles at endpoints. Since our
definition of “interpolating spline” requires G1 continuity, determining a single tangent angle at each control point
suffices. Thus, combining a two-parameter curve family with a technique for determining tangent angles at the control
points yields an interpolating spline. This section explores the entire family of such splines, called “two-parameter
splines” for short (non-interpolating splines won’t be considered, so the “interpolating” qualifier is often omitted for
brevity).

1



Curve type Tangents Continuity Extensibility Roundness Robustness Locality
MEC G2 G2 + + + −− −− +
Euler spiral G2 G2 + + + + + + ++ +
Hobby ≈ G2 ≈ G2 − − + + + +
Biarc (IKARUS) Lagrange G1 −− + + + ++ +
Kurgla 1 G2 G2 − + + + + +
Circle local G3 −−− + + + + + + + + +

Table 1.1 summarizes the properties of several splines in this two-parameter family. All of these are known and
appear in the literature.

• MEC is the interpolating spline minimzing the total bending energy. Each segment between control points is
a piece of a rectangular elastica, and the tangents are chosen so that G2 continuity is preserved across each
control point. (Section ??)

• Euler spiral is the interpolating spline for which each segment between control points is a section of an Euler
spiral, i.e. curvature is linear with arclength. Like the MEC, the tangents are chosen for G2 continuity. (Section
??)

• Hobby is a piecewise cubic spline developed for the Metafont system. It is best understood as a polynomial
approximation to the Euler spiral spline, with better robustness but lower performance on other metrics such
as smoothness and extensibility [1] (Section 1.8).

• Ikarus (Section ??).

• Kurgla 1 (Section 1.10).

• Circle spline (Section 1.11).

Note that there are also several splines in the literature designed to approximate the MEC (quite accurately in
the case of small angles), but do not fit into the two-parameter framework. In general, cubic polynomial curves have
four parameters. In a standard cubic spline, the curve segments can be any cubic polynomial, so the parameter space
is four dimensional. Parameterizing by chordlength approximates the MEC more closely but does not reduce the
dimensionality of the parameter space.

Similarly, the scale invariant MEC (dubbed SI-MEC in [9]) has segments that are piecewise elastica, and there
is an additional parameter global to the spline (and associated with tension forces at the endpoints, in a physical
model of the spline) that increases the dimension space of individual segments from the two of the pure MEC to the
three admitted by the elastica.

While the previous chapter examined the elastica with constrained endpoints, a more general problem is the
minimum energy curve that interpolates a sequence of control points. More formally, we seek, over the space of all
curves that pass through the control points (xi, yi) in order, the one that minimizes the MEC energy functional,
restated here:

EMEC [κ(s)] =
∫ l

0

κ2ds (1.1)

This problem is the mathematical idealization of a mechanical spline through control points fixed in position but
free to rotate, and with an infinitely thin beam free to slide through them with zero friction.

The earliest discussion of this more general problem is probably Birkhoff and de Boor in 1964. Over the next few
years, several authors published algorithms for computing these “nonlinear splines.” Probably the most illuminating
and accessible discussion of the early nonlinear spline theory is the 1971 report of Forsythe and Lee[6]. A brief
summary of their results follows:

• Each segment between knots is a MEC with λ = 0.5.

• Curvature is continuous across knots (G2 continuity).
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• Curvature is zero at endpoints (in the open case).

• The spline is extensible.

For each segment between knots, the elastica with λ fixed has two remaining parameters, corresponding to the
tangent angles at the endpoints. Recall that Figure ?? shows instances over the entire two-dimensional space in
which such solutions exist, as well as the boundary of that solution space. In particular, in the case of symmetrical
endpoint tangents, the curve is not a circular arc, so the MEC spline does not have the roundness property. Forsythe
and Lee found this unappealing, and propose adding an arclength penalty term to the functional:

E[κ(s)] =
∫ l

0

κ(s)2 + c ds (1.2)

As we now know, this change admits the solutions to the elastica equation other than λ = 0.5. Forsythe and Lee
derive the value for c so that the solution is a circular arc (corresponding to λ = 0), and speculate “whether such an
approach could be generalized is an open question.” Answering their question is a primary focus of this chapter.

1.2 Properties of the MEC spline

Figure 1.1: MEC roundness failure.

The most important property in which the MEC spline is lacking is roundness. For three control points placed in
an equilateral triangle (shown in Figure 1.1, with the spline drawn in a thick line, and the circle going through the
control points thin), the containing radius for the spline is approximately 1.035 times the radius of the circle going
through the control points. With four points, this radius deviation decreases to about 1.009, and asymptotically
converges as O(n4) with the number of points.

Another unpleasant property of the MEC spline is the failure to converge on a stable solution. This property is
intimately related to the relatively small envelope enclosing the solution space—the maximal endpoint tangent for
symmetric solutions to the λ = 0.5 is π/2, and not much better for any of the non-symmetric solutions.
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1.3 SIMEC

Several attempts have tried to address these shortcomings in the MEC spline. One is the scale invarient minimum
energy curve (or SI-MEC) proposed by Moreton and Séquin [9]. This spline is defined as the curve minimizing the
SI-MEC functional:

E[κ(s)] = l

∫ l

0

κ(s)2 ds (1.3)

The functional is termed “scale invariant” because the absolute value is invariant as the entire curve is scaled up.
By contrast, the MEC functional decreases with the reciprocal of the scaling constant. The MEC functional can be
seen as “rewarding” increases in the length of the curve, which accounts for the roundness failure—the actual curve
obtained is slightly longer than the circle, which accounts for the lower MEC functional. In the SI-MEC, the bias
toward longer curves is removed, and, in fact, the spline is round when the control points are co-circular.

The SI-MEC minimizes the MEC functional for a given length (a curve with a lower MEC energy at the same
length would also obviously have a lower SI-MEC cost functional). Thus, an appealing physical interpretation is that
of a mechanical spline with a bit of tension pulling at the endpoints, making the overall curve slightly shorter. Such
a curve is generally not two-parameter in the formulation above, and, in fact, all values of the elastica are possible
(thus, it can be seen as a three parameter spline). The SI-MEC has an unpleasant global coupling (equivalent
to finding the tension to apply to the mechanical spline) that makes a global solver considerably slower than the
corresponding pure MEC [9].

The SI-MEC is extensible, which follows directly from its variational formulation as the curve minimizing an
energy functional, such that it passes through all the control points. It shares G2 continuity and similar locality
properties with the MEC.

1.4 Piecewise SI-MEC

Another practical approach to improving the MEC is to use segments that each minimize the SI-MEC functional
between any adjacent pair of control points (given the tangent constraints at the endpoints), and enforce G2 continuity
across the control points. A careful reading of Mehlum’s description [8] shows that this is the spline approximated
by his kurgla 1 algorithm.

The MEC, piecewise SI-MEC, and Euler spiral splines are all very closely related, and are essentially identical
in the small-angle case. For larger bending angles at the control points, the difference is in the way that curvature
varies:

• Curvature in the MEC increases linearly with the distance from the line tangent to the inflection point.

• Curvature in the piecewise SI-MEC increases linearly along the chord.

• Curvature in the Euler spiral spline increases linearly along the arclength.

*** really needs a figure ***

Since any dependence on the chord breaks extensibility (adding a new point changes the chords), the arclength is
the most robust measure. For any given set of control points, the Euler spiral spline will have a slightly larger MEC
functional, but almost all of that can be traced to the fact that the scaling of the MEC functional rewards a longer
total curve length.

1.5 Cubic Lagrange (w/ length parameterization)

+ Reasonable approximation to MEC in small-angle case
+ Not round (radius error == quartic??)
+ Not extensible
+ Locality same as MEC
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1.6 IKARUS (biarc)

The spline used by Peter Karow’s IKARUS system [2] also falls into the category of two-parameter splines. It was
intended for font design, and was particularly well suited for interpolating between “masters” of different weights.

The IKARUS spline uses two completely different mechanisms to achieve the two basic elements of the two
parameter spline: the determination of tangents and the shapes of the curve segments between control points.
To determine the tangents, first a cubic Lagrange polynomial (with normalization based on the chordlengths) is
fit through the control points. Then the polynomial curve is discarded (but the tangents preserved), and, for
each segment, a curve defined by biarcs is substituted. An aribitrary biarc has one additional degree of freedom,
corresponding to the split point where the two arcs join, and IKARUS defines this somewhat arbitrarily to provide
reasonable results.

The cubic Lagrange spline is defined as follows (see [5, p. 23] for more detail), given a sequence of input points
(ti, zi):

Li,3(t) =
i+2∑

j=i−1

zj
ωi−1,3(t)

(t− tj)ω′i−1,3(tj)
, ωi−1,3(t) =

i+2∏
j=i−1

(t− tj) (1.4)

To obtain the Lagrange polynomial normalized by chordlengths, successive ti+1 so that ti+1 − ti = |zi+1 − zi|, in
otherwords, the parameterization is the same as the chordlength (set t0 = 0 for convenience, but the shape of the
spline doesn’t depend on it).

Even though the Lagrange polynomial fit can easily incorporate inflection points, the biarc primitive cannot, so
inflection points must be explicitly marked in the input.

DIGITAL PUNCH CUTTING 155

(a) Final shape

(b) Changes are marked in black

(c) Final IK-points

Figure 6. Comparison of the hand-digitized result with the original

Figure 1.2: Typical lettershape using IKARUS, with Spiro comparison.

The spline is not extensible, as adding additional points perturbs the chordlength parameterization. Further,
roundness is fairly decent, as the biarc becomes a circular arc when the endpoint tangents are symmetrical. Continuity
is only G1, but the biarc segments keep the spline from exhibiting extreme variations in curvature as is typical of
purely polynomial-based splines. The spline is reported to work well when the control points are dense. Karow
recommends one control point for every 30 degrees of arc [?]. A typical example is shown in Figure 1.2 (reproduced
from [?]). For comparison, a Spiro spline for the same letter is also shown. As can be seen, approximately half as
many control points are needed, and the smoothness and quality of the result is quite favorable.
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Figure 1.3: Euler’s spiral

1.7 Euler’s spiral

One particularly well-studied two-parameter spline is Euler’s spiral, also known as the spiral of Cornu or the clothoid.
More precisely, it is the spline formed by joining piecewise Euler’s spiral segments with curvature (G2) continuity at
the knots.

Euler’s spiral, plotted in Figure 1.3 over the range [−5, 5], is most easily characterized by its intrinsic definition:
curvature is linear with arclength.

κ(s) =
s

2
(1.5)

Integrating the intrinsic equation yields this equation, known as the Fresnel integrals (historically, one each for
the real and complex part):

x(s) + iy(s) =
∫ s

0

eit2dt (1.6)

This integral is also commonly expressed with a scale factor applied to the parameter. The resulting curve is
similar; its size is sqrt 2

π times that of the first formulation, with the velocity similarly scaled so that it also has unit
velocity.
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C(s) + iS(s) =
∫ s

0

eiπt2/2dt (1.7)

1.7.1 Euler’s spiral as a spline primitive

Euler’s spiral is readily adapted for use as a two-parameter primitive for a spline. Given tangent angles at the
endpoints, find parameters t0 and t1 from which to “cut” a segment from the spiral, so that the resulting segment
meets the endpoint constraints (for now, assume that such parameters can be found; an efficient algorithm will be
given in Section ??.

The behavior of this primitive is shown in Figure 1.4. Compare to Figure ??, showing the corresponding behavior
for the MEC spline. Note, among other things, that the Euler’s spiral spline primitive is defined and well-behaved
over a much wider range of endpoint tangent angles.

1.7.2 Variational formulation of Euler’s spiral

The spline literature has generally been split into two camps: variational techniques, and the use of explicitly stated
curves such as the Cornu spiral. Ironically, Euler’s spiral was born of the study of elastic springs just as was
the elastica, but for the most part the literature does not examine Euler’s spiral from a variational point of view.
This section ties these two threads together, showing that the Cornu spiral does indeed satisfy some fundamental
variational properties.

First, as noted by Kimia et al[3], the Cornu spiral is among the solutions of the equation for the MVC functional,
i.e. the curve that minimizes the MVC energy functional subject to various endpoint constraints:

EMV C [κ(s)] =
∫ l

0

(dκ

ds

)2

ds (1.8)

This result can be readily derived by treating the problem as an Euler variational problem expressed in terms
of κ, i.e. F (x, y, y′) = y′2), with s for x and κ for y in the terms of Equation ??, as stated in Chapter ??. The
corresponding Euler-Lagrange equation is particularly simple:

κ′′ = 0 (1.9)

The solution family is thus κ = k0 + k1s, which are simple similarity transformations of the basic Cornu spiral.
While the simplicity of this result is pleasing, it is unsatisfying for a variety of reasons. First, because the

variational equation is written in terms of κ rather than θ, the boundary conditions are written in terms of curvature
rather than tangent angle. Similarly, the additional terms corresponding to Equation ?? respresenting the positional
endpoint constraints are missing. Recall that without these constraints, the only solution to the MEC equation is a
straight line.

So this result only tells us that the Cornu spiral is the MVC-optimum curve satisfying curvature constraints on
the endpoints, but with unconstrained endpoint positions and tangent angles. As we shall explore more deeply in
Section ??, the solution to the MVC under other constraint configurations will in general not be a Cornu spiral, a
point not clearly made in the presentation by Kimia et al.

A more fundamental problem is that the degree of continuity doesn’t match. A spline made of piecewise Cornu
segments has G2 continuity, the same as a MEC spline, while the solution to the MVC functional with positional
constraints for internal knots has G4 continuity.

So the Euler spiral is a reasonably good first-order approximation to the MEC functional, and is a special case
in the solution space of the MVC functional, but might there be a functional for which it is actually the optimum?
In a sense, this is the reverse of the usual variational problem, in which a function is sought that minimizes a given
function. Here, we seek a functional which happens to be minimized by the given function, in this case the Euler
spiral.

We conjecture that there is indeed a functional: the maximum rate of curvature change over the entire arclength.

EMAXV C [κ(s)] = max
∣∣∣dκ

ds

∣∣∣ (1.10)

This functional is related to the MVC; while the MVC is the 2-norm of curvature variation, EMAXV C corresponds
to the ∞-norm.
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Figure 1.4: Euler’s spiral spline primitive over its parameter space.

8



Figure 1.5: Closed Euler example.

1.7.3 Euler’s spiral spline in use

How does the Euler spiral perform in the intended application domain of drawing glyph outlines? Experimentation
yields encouraging results. One such example, a lowercase ’c’ traced from 14 point metal Linotype Estienne, is shown
in Figure 1.5. Estienne is a distinguished book face designed by the eminent English printer George W. Jones, and
released by Linotype in 1930[7, p. 133]. It is not currently available in digital form, making it an attractive candidate
for digitization.

The ’c’ is a simple closed curve, reasonably smooth everywhere, but with regions of high curvature at both
terminals. Below the glyph itself is a curvature plot, beginning at the knot marked by an arrow and continuing
clockwise. The long flat section on the left is the inner contour, the sharp spike is the lower terminal, and the
other long flat section (which is both longer and lower curvature) is the outer contour. Note that the curve has two
inflection points, corresponding to zero crossings on the curvature plot and marked on the outline with short lines.

A more complex example is shown in Figure 1.6, in this case a lowercase ’g’ from the same font. In this case,
there are three closed curves; the outer shape and two “holes.” While the top hole is a simple smooth curve, the
other curves contain both G2-continuous smooth knots and “corner points”, with only G0 continuity. Such curves
can be factored into sections consisting of the corner points at the endpoints and the smooth knots in the interior,
then joined together. Note that sections with no smooth knots are straight lines (there is one at the top of the “ear”),
and sections with a single smooth knot are circular arcs (two of these make up the rest of the ear). More generally,
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Figure 1.6: Complex Euler example.
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Figure 1.7: Difficulty with straight-to-curved joins.

each spline segment bordered by a corner point is a circular arc, with zero variation of curvature.
Experience with drawing a significant number of glyphs is encouraging. The Euler spiral spline can represent a

wide range of curves expressively and with an economy of points. Further, in an interactive editor, the correspondence
between the input (the placement of knots and control points) seems considerably more intuitive than the standard
Bézier curve editing techniques.

The trickiest curves to draw using pure Euler’s spiral splines are transitions between straight lines and curves, as
typical in the shape of a “U.” The difficulty is illustrated in Figure 1.7. Essentially, the problem is that the segment
adjoining the corner point tends to be a circular arc segment, rather than being constrained to be a straight line. It’s
possible, by careful interactive placement, to decrease this curvature so that it’s almost a straight line, but then any
changes to the curved segment will undo the effect of this careful placement. Similar problems occur if the points
are determined by interpolation between different masters, or some other parametric variation. We shall return to
the problem of straight-curve joins in Chapter ??.

1.8 Hobby’s spline

A significant interpolating spline, especially in the application domain of font design, is Hobby’s spline as implemented
in Metafont[1]. It is perhaps easiest to understand this spline as a very computationally efficient approximation to
the Euler spiral spline of the previous section.

The definition of the primitive segment, with endpoint tangent angles θ0 and θ1, is as follows:
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a =
√

2
b = 1

16

c = (3−
√

5)/2
α = a(sin θ0 − b sin θ1)(sin θ1 − b sin θ0)(cos θ0 − cos θ1)
ρ = 2+α

1+(1−c) cos θ0+c cos θ1

σ = 2−α
1+(1−c) cos θ1+c cos θ0

x0, y0 = 0, 0
x3, y3 = 1, 0
x1, y1 = ρ

3τ cos θ0,
ρ
3τ sin θ0

x2, y2 = 1− σ
3τ cos θ1,

σ
3τ sin θ1

(1.11)

The resulting (xi, yi) are the coordinates for a standard cubic Bézier curve. The adjustable parameter τ cor-
responds closely to the “tension” parameter of B-splines, and its default value is 1. In the Metafont sources for
Computer Modern, the most common other value found is 0.9, and that is only for a few glyphs, including lowercase
’c’[4, p. 311].

The behavior of the Hobby spline primitive over its parameter space can be seen in Figure 1.8 (see Figure 1.8 for
comparison to the MEC). Note that it is defined for all values of θ0 and θ1, but the figure only shows values up to
2.156 (123.5 degrees).

Similarly, the curvature plot is shown in Figure 1.9. For relatively small angles, is approximation to linear
curvature is good, but sharp curvature peaks are apparent at larger angles.

While the Euler spiral spline is defined as the one which is piecewise Euler spiral and G2 continuous at the knots,
the Hobby spline uses a slightly different criterion. Hobby introduces the concept of mock curvature, which is the
linear approximation (taking only the first-order term of the exact equation) of endpoint curvature as a function of
endpoint angles θ0 and θ1. The global solution to the spline is defined as the assignment to the vector of tangent
angles so that mock curvature is equal on either side of each knot.

A very important consequence is that solving the global spline is a linear problem. In fact, since each tangent
angle affects two neighboring segments, and each segment in turn contributes to the mock curvature constraint at its
two endpoints, the entire system of constraints can be represented as a tridiagonal linear equation, which is readily
solvable in O(n) using textbook techniques. Hobby also proves that the matrix is non-singular within a reasonable
range of values for τ , including of course τ = 1. Thus, Hobby’s is one of the few “advanced” splines for which there
is a solution for all configurations of input points.

Evaluating the spline properties, we find that the Hobby spline does fairly well. For small angles, it closely
approximates the Euler spiral spline. It is not round, but converges to roundness as O(n6) as opposed to the MEC,
which is only O(n4). Similarly, the extensibility and continuity of curvature are only approximate, and only good at
small angles. However, as noted above, it is an exceedingly robust spline. It is thus a good choice if computational
resources are limited, robustness is key, and the input control points are closely enough spaced that angles are small.

1.9 Splines from fixed generating curves

The MEC has the property that all segments between control points can be cut from a single generating curve,
the rectangular elastica (here, “cut” means selecting points on the generating curve, then performing the unique
rotation, scaling and translation to make these endpoints match the corresponding control points). This property
can be derived from the equilibrium-of-forces formulation of the elastica, and the fact that the constraints at the
control points exert zero tension, but these facts are not intuitively obvious.

Similarly, in the Euler spiral spine, segments between control points are cut from the Euler spiral (“cut” may
also include a mirror flip, because this curve lacks a mirror symmetry).

What do splines cut from a single generating curve have in common? Why do so few other splines have this
property? Might there be some additional flexibility that can be gained by choosing segments from a curve family
rather than a fixed generating curve?

The key to answering these questions is extensibility. In fact, the class of two-parameter extensible splines is
exactly equal to the class of two-parameter splines cut from a generating curve.

+ Give argument that anything that’s 2-parameter and extensible must be cut from a fixed curve.
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Figure 1.8: Hobby spline primitive over its parameter space.
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Figure 1.9: Curvature plot of Hobby spline over its parameter space.
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Other properties, such as roundness, can then be derived from properties of the generating curve. For example, for
the spline to be round, the curve must tend to a circular shape in the limit. More precisely, lims→inf κ′(s)/κ(s) = 0).
The Euler spiral meets this condition because κ tends to infinity, while κ′ is fixed. Another possibility would be a
curve tending to fixed curvature in the asymptote, in which case κ′ would tend to 0. The MEC, by contrast, clearly
does not have this property.

The envelope of endpoint chord angles (as plotted in Figure ?? for the MEC) also has an effect. A small envelope
yields failure to converge. A generating curve without an inflection (such as a parabola) excludes all antisymmetric
endpoint angle configurations from this envelope, even for tiny angles.

1.10 Piecewise SI-MEC splines, or Kurgla 1

The Autokon system of Mehlum [8] was inspired by the goal of simulating a real, mechanical spline, but its Kurgla 1
algorithm actually implemented something a bit different, with both advantages and disadvantages with respect to
the MEC it was intended to mimic.

Mehlum based his design on the fact that the curvature of an elastica linear in distance from the line of action.
His solver approximated the integration of this intrinsic equation as a sequence of circular arcs, the curvature of each
determined by the distance from the line of action.

As we’ve seen, the general elastica has three degrees of freedom; two for the position and angle of the line of action
with respect to the control point chord, and one for the amplitude of the curvature variation. Note that inflections
occur at the line of action. In this formulation, choosing all these parameters to minimize the total bending energy
is a tricky global optimization problem, and Kurgla 1 did not attempt it.

In particular, it nailed down the angle of the line of action, choosing it to be perpendicular to the chord. In
this way, the parameter space was reduced from three to two, and the problem became much more tractable. In
particular, the curve segments were determined by the tangents at the endpoints, and the remaining global problem
of choosing tangents for G2 continuity yields to simple Newton-style solution.

As shown in Section ??, an elastica segment with the line of action perpendicular to the chord is the one minimizing
the SI-MEC energy for the angle constraints at those endpoints. Thus, the Kurgla 1 algorithm effectively computes
a piecewise SI-MEC.

One consequence is that Kurgla 1 is round, unlike the pure MEC, since the SI-MEC describes a circular arc in
the case of symmetrical endpoint angle constraints. Another consequence is considerably better robustness than the
pure MEC, because the envelope of parameter space is approximately twice as large.

However, the price paid for these improvements is loss of extensibility; when a new on-curve point is added, it
generally changes the chords, and thus the lines of action for the resulting elastica sections.

Thus, though it is based on the elastica, and has some desirable properties, Kurgla 1 is neither a true energy min-
imizing spline like the MEC, nor does its extensibility and robustness compare well to the Euler spiral spline. Indeed,
Mehlum was aware of these limitations, and his subsequent Kurgla 2 algorithm is the earliest known implementation
of the Euler spiral spline.1

1.11 Circle splines

Interpolating splines have a tradeoff between extensibility and locality. The two-parameter splines described above
favor extensibility. It is possible to make different choices, and favor locality instead. An excellent example is the
“circle spline” of Seqúın, Lee, and Yin[10].

In the circle spline, the tangent angle at each control point is chosen as the tangent of the circle going through
the control point and its two neighbors. Each segment is then constructed (using a blending of these circles) from
the tangents at the endpoints. Thus, moving a control point only affects four segments—two on either side.

The construction of the primitive curves is robust and smooth. In fact, the construction guarantees zero κ′ at
the endpoints, and that the curvature is identical to that of the circle used to determine tangents, so the resulting
spline has G3 continuity.

Unfortunately, even though the spline has good locality and G3 continuity, it is not particularly smooth for all
inputs, and adding additional on-curve control points can cause serious deviations from extensible, in many cases

1Mehlum wrote to George Forsythe on July 9, 1971, mentioning “Fresnel integral splines” as recent work. The work was published in
1974 [8].
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Figure 1.10: Circle spline extensibility failure.

adding additional inflections. Figure 1.10 clearly shows the lack of extensibility; the two paths differ only by the
addition of the central point in the right-hand figure.
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