
lo: a n e w p r o g r a m m i n g notat ion
Raphael L. Levien

Levien Ins t rument Co.
Box 31

McDowell, VA 24458

10 Sep 1989

I n t r o d u c t i o n

Many years before the first computer was built, or the f irst p rogramming nota-
tion designed, AlanTuring proved that all computers , and by extension, all p rogram-
ming notations, are capable of solving all the same types of problems (known as
computable problems).

What this means in practice is that we can have almost any programming nota-
tion we want. Programming notations have been designed to support existing, famil iar
notations, to be appropr ia te for a specific class of applications, to resemble English,
and countless other purposes.

The author set out to design the simplest practical programming notation possible.
The result is the new programming notation Io, which is described in this paper.

Historical background

If the complexity of a programming notation is measured by the number of
mechanisms, then clearly the simplest programming notation would consist of one
single mechanism.

A typical pitfall of such effor ts is to design a notation that is mathematical ly
self-contained, but with no facilities for input or output. In order to use such a
notation in practice, it is necessary to forcibly graf t input and output commands
onto the notation.

In order to avoid this, it is clear that the single mechanism of the programming
notation should be able to support communication with the outside world. For this
reason, Hoare's Communicating Sequential Processes were considered. However,
Hoare's mechanisms are rather complex and awkward, so this was ultimately rejected.

It is also required, of course, that the mechanism also be able to suppor t ordinary
computat ions. In addition, it would be nice if it were also possible to construct large
systems out of smaller components , with a mechanism similar to a procedure call.

All o f these requirements were reconciled with a mechanism refer red to in this
paper as 'per forming an action.'

Output is accomplished by simply performing an action corresponding to an
output device. Input is accomplished by specifying an action for the input device to
pe r fo rm whenever it has an input value.

Buffered and blocked communicat ion can beaccompl i shed by adding a buf fe r or
blocker in series with an action.

Procedure call can be accomplished by specifying a ' return action' to be per-
formed when the procedure is to return.

It is a very simple mechanism, but can be assembled into patterns of any size and
complexity. It is interesting that many of the important concepts in computing
science show up as part icularly simple patterns.

Actions in Io

The main mechanism in Io is the action, which consists of an opera tor and a
number of arguments . An example:

write* 5

SIGPLAN Notices, Vol. 24, No. 12
24

Here, write* is the operator, and 5 is the only argument. Write* displays its
argument on the screen. Thus, when the above action is performed, the screen will
show 5.

This type of mechanism is not particularly unusual in programming notations.
What is unusual about Io is that there is no other mechanism.

The Io notation does not include sequence (do A, then do B). This is a problem,
because sequence is one of the most important mechanisms in programming.

The solution to this problem is to include sequence in the operator. As an exam-
ple, the operator write takes two arguments. The first argument is a number, which
it writes, and the second argument is an action, which write performs after
it has written the number.

We need a notation for specifying an action as an argument. In Io, this is done
differently if the action is the last argument. If the last argument is an action, it is
written as

; action

If an argument other than the last is an action, it is written as

(action)

So, if we want the screen to show 5 6, we can perform

write 5; write* 6

The first argument to write is 5. The second is ; write* 6.
It is clear that write* is not very useful, as it can only be used if it is the last

action to be performed. Instead, we can use the te rm (terminate) operator, which
takes no arguments, and does nothing. So, our example can now be written

write 5;
write 6;
term

T a k i n g a r g u m e n t s

We wish to be able to write an action that takes arguments. When the action is
performed with arguments, these arguments are bound to the specified variables. The
Io notation for this is

variables; action

An action that writes its argument twice is

• --) x; wr i t e x; wri te x; term

We can then define an operator as a particular action. The notation for this is

operator: action.

So, we can define the operator w r i t e t w i c e

writetwice: ~ x;
write x;
write x;
term.

25

Then, when we pe r fo rm wri te twice 12, the screen will show 12 12.
This operator , though, has the same problem as write*; there is no way to per-

form another action af ter wr i te twice is finished. We can fix this problem in the
same way: introduce a second argument , here called ret , for re turn action.

wr i te tw ice: -4 x ret;
wr i te x;
wr i te x;
ret.

Now, if we want the screen to show 7 7 9, we can pe r fo rm

wr i te tw ice 7;
wri te 9;
te rm

This a rgument mechanism is also an excellent way for an opera tor to re turn
values. For example, the opera tor + takes three arguments . The first two are num-
bers , and the third is an action. + adds its first two arguments , then pe r fo rms the
third with the result as an argument . Thus, the screen will show 5 af ter pe r forming

+ 2 3 - 4 x ;
wri te x;
te rm

Conditionals

A condit ional opera tor is one that takes more than one action argument , and
chooses one to per form. A typical example is the = operator , which takes four
arguments . The first two are numbers; the last two are actions. If the two numbers
are equal, = pe r fo rms its third argument . If they are not equal, = pe r fo rms its
fourth.

= x y (true-act ion); false-action

is equivalent to the familiar

if x = y then t rue-act ion else false-action endi f

A good example of = also introduces an opera tor that can pe r fo rm itself recur-
sively.

count: -4 start end ret;
wr i te start;
= start end (ret);

+ start 1 -4 start;
count start end ret.

If we want the screen to show 1 2 3 4 5, we can then pe r fo rm

count 1 5;
te rm

The opera to rs > and < are similar to =. These are il lustrated in the opera to r gcd,
which pe r fo rms its third argument with the greatest common denominator of its f irst
two.

26

god: ~ x y ret;
> x y (° x y ~ x;

gcd x y ret);
< x y (- y x ~ y ;

gcd x y ret);
ret x.

Using actions to store data

Here is an action that, in effect, stores the two numbers 242 and 338.

twonums: ~ ret;
ret 242 338.

When twonums is performed, it in turn performs its argument, and gives it the
two numbers as arguments.

We can then define writepair, which takes two arguments. The first is an action,
similar to twonums , that returns two numbers, and the second is the return action to
be performed when writepair is finished.

wri tepai r : ~ pair ret;
pair ~ x y;
wr i te x;
wr i te y;
ret.

As would be expected, 242 338 is written on the screen by

wr i tepa i r twonums;
te rm

We can also define makepair, which takes two numbers, and return a pair similar
to twonums.

makepair : -4 x y ret;
ret ~ ret;
ret x y.

When makepair is performed with 242, 338, and some action, it will perform the
action with an argument of ~ ret; ret 242 338, which is identical to twonums.

Although this looks like sequence, it isn't, because the pair returned by makepair
can be performed any number of times.

Data structures

By combining a conditional with an action that stores data, you get a conditional
. . . . ~ stores data. This can be used to build a data structure.

Take as an example a linked list of numbers. There are two kinds of lists: empty
lists, and non-empty lists. A non-empty list contains the f irst number of the list, and
another list, which is the rest of the list.

In Io, a linked list is best represented as an action that takes two arguments. An
empty list just performs its f irst argument. A non-empty list performs its second
argument , and gives it the first number in the list, and the rest of the list.

27

We can def ine writel ist , which takes two arguments: a list and a return action. It
writes all numbers in the list, then performs its second (return) argument . As
descr ibed above, the parentheses notation is used for action arguments other than the
last argument.

writel ist: -..> l ist ret;
l ist (ret)

f i r s t rest;
wr i te f i rst ;
writel ist rest;
ret.

Here are a few operators for constructing linked lists. Note the similarity between
makepair, above, and a p p e n d - t o - h e a d , below.

empty: -.> null ful l ;
nul l .

a p p e n d - t o - h e a d : ~ num list ret;
ret ..,.> null ful l ;
ful l num list.

append: ~ listO list1 ret;
listO (ret list1)

f irstO restO;
append restO list1 --> restO;
ret --> null ful l ;
ful l f irstO restO.

append - to - ta i l : ..-> l ist num ret;
a p p e n d - t o - h e a d num empty ..-> list1;
append l ist list1 ret.

Performing

append- to - ta i l empty 1 --.~ list;
append- to - ta i l list 2 ---> list;
append- to - ta i l list 3 ~ list;
wr i te l ist list;
te rm

will show 1 2 3 on the screen.

Binary trees

Because Io has no assignment statement, it would seem very diff icul t to insert a
value into a binary tree. However, the solution is quite simple: create a new binary
tree containing the new node.

A binary tree has similar structure to a linked list. It is pe r fo rmed with two
arguments. An empty tree, like an empty linked list, just per forms its f i rs t argument.

emptytree: ~ null ful l ;
nul l .

A non-empty tree will pe r form its second argument with the key, the data value,
the left subtree, and the right subtree.

The opera tor search per forms its third argument if the key is not in the tree, or
its fourth argument , with the data value, if it is in the tree.

28

search: ~ tree key notf found;
tree (notf)

k d left r ight;
< key k (search left key notf found);
> key k (search r ight key notf found);

found data.

The operator ins (insert) takes a tree, a key, a new data value, and a return
action. It returns a new tree, with the new data value inserted.

ins: ~ tree key data ret;
tree (ret ~ null full;

ful l key data emptytree emptytree)
k d left r ight;

< key k (ins left key data -.-) left;
ret ~ null full;
full k d left right);

> key k (ins r ight key data ~ r ight;
ret ~ null full;
full k d left right);

ret ~ null full;
full k data left r ight.

Coroutines

Coroutines are an important concept of computing science, but few programming
notations properly support them. It is surprising how easy they are to implement in
Io.

The idea of coroutines is to have two (or more) routines. When one of the
routines gets to a point where it can no longer proceed (such as, when it needs more
input), it is suspended, and another routine continues until it, in turn, can no longer
continue (such as, when it has a value to output). Then, it is suspended and another
routine is resumed.

This is used, for example, in creating a stream. A stream carries a sequence of
numbers, without consuming storage. Therefore, it can be infinite. Even in the case
of a finite stream, though, it has an advantage over a linked list, because computa-
tion can begin immediately after the first number is known.

The Io implementation of streams is analogous to linked lists. A stream takes two
arguments. If there is no more data in the stream, it performs its first argument.
Otherwise, it performs the second argument, with a data value and the continuation
of the stream.

Here we define the operator count-stream, and bind an infinite counting stream to
the variable s.

count-streamO: ~ x out;
out x ~ null out;
+ x l ~ x ;
count-streamO x out.

count-stream: -..) ret;
ret .-9 null full;
count-streamO 0 full.

count-stream ~ s

S has exactly the same structure as a linked list. In fact, wri te l is t s will write 0 1
2 3 4 5... on the screen.

29

C o n c u r r e n c y

Concurrency is achieved with the par operator, which takes two action arguments.
It performs both actions simultaneously.

Since there is no assignment to variables, there is no chance of conflict f rom
improper use of shared variables. On the other hand, there is no possibility of
communication between the two actions. We need a facility for this.

C o n c u r r e n t c o m m u n i c a t i o n

As mentioned earlier, the mechanism of performing an action is similar to
concurrent communication. Performing an action corresponds to sending a message,
and an action that gets performed, in a sense, receiving a message.

The difference between synchronous communication, as Hoare describes in his
CSP, and Io, is that if a process in CSP is not ready to receive, the sender must
wait until the receiver becomes ready. In Io, the receiver is always ready. If more
than one message is sent at the same time, then, in effect , multiple copies of the
receiver are created.

In the case where the receiver corresponds to a physical device that can only
handle one request at a time (such as a disk drive), some facility is necessary to
arbitrate, and only let through one message at a time.

This is accomplished in Io with the t han built-in operator. Chan takes one argu-
ment, to which it immediately returns two actions, known as the send and receive
actions.

When either the send action or receive action (but not both) is performed, noth-
ing happens until the opposite is also performed. But, when this happens, the argu-
ment to the send action is returned to the argument of the receive action. Only one
such pair is matched at a time.

This gives us enough to implement write, given an operator screenwri te , which
takes a number to write, a number for the cursor position, and an action to which it
returns the new cursor position. In order to allow several different processes to write
numbers on the screen, so that they don't collide, we can define

chan ~ wri te! write?;
wr i temon: ~ cursor;

wr i te? ~ x;
screenwr i te x cursor ~ cursor;
w r i t emon cursor.

par (wr i temon 0);
wr i te : ~ x ret;

par (wri te! x);
ret.

In cases where more data than a single number is to be transmitted, an action
containing data can be used as the argument to the send action.

A note on implementat ion

An important consideration in any programming notation is how close the
mechanisms are to the implementation platform. This is mistakenly known as the
speed of the notation.

For example, C was originally designed partly as a fancy assembler for the PDP-
11. Mechanisms such as *p++ correspond exactly to PDP-I1 instructions.

30

II II

Performing an action in Io is actually similar to a goto. However, passing an
action as an argument is similar to closure formation. In a naive implementation, a
dynamic allocation would be necessary for every time an action was used as an
argument. However, even this is not too expensive, and garbage collection is not
required.

Because Io is such a simple notation, the prospects for a very eff icient implemen-
tation are good, even without a complex compiler.

It seems likely that a large proportion of the time spent by a naive implementa-
tion would be for the dynamic allocation. This can be greatly reduced by combining
the space required for several (or many) closures into one dynamic allocation.

It may also be possible to allocate some space in a stack, if the platform does
this efficiently.

Another important optimization is to code some operators in-line, rather than to
code a goto or call to the operator. This is particularly important for the built-in
operators .

With these and other optimizations, it should be possible to implement Io at least
as eff ic ient ly as other programming notations.

Another intriguing possibility is the compilation of Io programs directly to
hardware. The idea of performing an action is probably best implemented with
transition signalling. As a matter of fact, the author got the idea for Io immediately
after reading Ivan Sutherland'sTuring Award Lecture about transition signalling and
micropipelines.

Conclusion

Io is a very simple programming notation. It turns out to be surprisingly powerful
as well. Without using any built-in operators, it is possible to construct boolean
values, linked lists of arbitrary type, numbers (implemented as a record of boolean
values), and binary trees of arbi trary type. In addition, still without any built-in
operators , it is possible to traverse linked lists and trees, as well as implement
coroutines. This is not a bad track record for a programming notation with only one
mechanism.

With the addition of built-in operators for eff ic ient implementation of numbers ,
input and output, and concurrency and communication, Io becomes a practical
general purpose notation.

C.A.R. Hoare said, 'simplicity is the price one must pay for reliability.' Perhaps,
with Io, simplicity is not such a high price after all.

References

[1] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall
International, London, 1985

[2] Ivan E. Sutherland, Micropipelines, Turing Award Lecture, Communications
of the ACM, 32,6 (June 1989), 720-738

[3] Guy L. Steele, Lambda: The Ultimate Declarative, AI Memo 379, MIT AI
Lab, Cambridge, Nov 1976

31

