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I n t r o d u c t i o n  

Many years before the first computer  was built, or the f irst  p rogramming nota- 
tion designed, AlanTuring proved that all computers ,  and by extension, all p rogram-  
ming notations, are capable  of  solving all the same types of  problems (known as 
computable  problems). 

What this means in practice is that we can have almost any programming nota- 
tion we want.  Programming notations have been designed to support  existing, famil iar  
notations, to be appropr ia te  for a specific class of  applications, to resemble English, 
and countless other purposes.  

The author  set out to design the simplest practical  programming notation possible. 
The result  is the new programming notation Io, which is described in this paper. 

Historical background 

If  the complexity of  a programming notation is measured by the number  of  
mechanisms,  then clearly the simplest programming notation would consist of  one 
single mechanism.  

A typical pitfall  of  such effor ts  is to design a notation that is mathematical ly  
self-contained,  but with no facilities for input or output. In order  to use such a 
notation in practice, it is necessary to forcibly graf t  input and output commands 
onto the notation. 

In order  to avoid this, it is clear that the single mechanism of the programming 
notation should be able to support  communication with the outside world. For this 
reason, Hoare's  Communicating Sequential Processes were considered. However, 
Hoare's mechanisms are rather  complex and awkward, so this was ultimately rejected. 

It is also required, of  course, that the mechanism also be able to suppor t  ordinary 
computat ions.  In addition, it would be nice if it were also possible to construct  large 
systems out of  smaller  components ,  with a mechanism similar to a procedure  call. 

All o f  these requirements  were reconciled with a mechanism refer red  to in this 
paper  as 'per forming an action.' 

Output is accomplished by simply performing an action corresponding to an 
output device. Input  is accomplished by specifying an action for the input device to 
pe r fo rm whenever it has an input value. 

Buffered  and blocked communicat ion can beaccompl i shed  by adding a buf fe r  or 
blocker in series with an action. 

Procedure  call can be accomplished by specifying a ' return action'  to be per- 
formed when the procedure is to return.  

It is a very simple mechanism,  but can be assembled into patterns of  any size and 
complexity. It is interesting that many of  the important  concepts in computing 
science show up as part icularly simple patterns. 

Actions in Io 

The main mechanism in Io is the action, which consists of  an opera tor  and a 
number  of  arguments .  An example: 

write* 5 
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Here, write* is the operator, and 5 is the only argument. Write* displays its 
argument  on the screen. Thus, when the above action is performed, the screen will 
show 5. 

This type of mechanism is not particularly unusual in programming notations. 
What is unusual  about Io is that there is no other mechanism. 

The Io notation does not include sequence (do A, then do B). This is a problem, 
because sequence is one of the most important mechanisms in programming. 

The solution to this problem is to include sequence in the operator. As an exam- 
ple, the operator write takes two arguments. The first argument is a number, which 
it writes, and the second argument is an action, which write performs after 
it has written the number. 

We need a notation for specifying an action as an argument.  In Io, this is done 
differently if the action is the last argument. If the last argument is an action, it is 
written as 

; action 

If an argument  other than the last is an action, it is written as 

(action) 

So, if we want the screen to show 5 6, we can perform 

write 5; write* 6 

The first  argument to write is 5. The second is ; write* 6. 
It is clear that write* is not very useful, as it can only be used if it is the last 

action to be performed.  Instead, we can use the te rm (terminate) operator, which 
takes no arguments,  and does nothing. So, our example can now be written 

write 5; 
write 6; 
term 

T a k i n g  a r g u m e n t s  

We wish to be able to write an action that takes arguments. When the action is 
performed with arguments,  these arguments are bound to the specified variables. The 
Io notation for this is 

variables; action 

An action that writes its argument twice is 

• --) x; wr i t e  x; wri te  x; term 

We can then define an operator as a particular action. The notation for this is 

operator: action. 

So, we can define the operator w r i t e t w i c e  

writetwice: ~ x; 
write x; 
write x; 
term. 
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Then, when we pe r fo rm wri te twice  12, the screen will show 12 12. 
This operator ,  though, has the same problem as write*; there is no way to per- 

form another  action af ter  wr i te twice  is finished. We can fix this problem in the 
same way: introduce a second argument ,  here called ret ,  for re turn  action. 

wr i te tw ice:  -4 x ret; 
wr i te  x; 
wr i te  x; 
ret. 

Now, if we want the screen to show 7 7 9, we can pe r fo rm 

wr i te tw ice  7; 
wri te  9; 
te rm 

This a rgument  mechanism is also an excellent way for an opera tor  to re turn  
values. For  example,  the opera tor  + takes three arguments .  The first  two are num- 
bers ,  and the third is an action. + adds its first  two arguments ,  then pe r fo rms  the 
third with the result  as an argument .  Thus, the screen will show 5 af ter  pe r forming  

+ 2 3 - 4 x ;  
wri te  x; 
te rm 

Conditionals 

A condit ional  opera tor  is one that takes more than one action argument ,  and 
chooses one to per form.  A typical example is the = operator ,  which takes four 
arguments .  The first  two are numbers;  the last two are actions. If the two numbers  
are equal, = pe r fo rms  its third argument .  If they are not equal, = pe r fo rms  its 
fourth.  

= x y ( true-act ion);  false-action 

is equivalent  to the familiar  

if x = y then t rue-act ion else false-action endi f  

A good example of  = also introduces an opera tor  that can pe r fo rm itself recur- 
sively. 

count: -4 start  end ret; 
wr i te  start; 
= start  end (ret); 

+ start  1 -4 start;  
count  start  end ret. 

If we want the screen to show 1 2 3 4 5, we can then pe r fo rm 

count 1 5; 
te rm 

The opera to rs  > and < are similar to =. These are il lustrated in the opera to r  gcd, 
which pe r fo rms  its third argument  with the greatest  common denominator  of  its f irst  
two. 

26 



god: ~ x y ret; 
> x y (° x y ~ x; 

gcd x y ret); 
< x y  (- y x  ~ y ;  

gcd x y ret); 
ret x. 

Using actions to store data 

Here is an action that, in effect,  stores the two numbers 242 and 338. 

twonums:  ~ ret; 
ret 242 338. 

When twonums is performed,  it in turn performs its argument,  and gives it the 
two numbers as arguments. 

We can then define writepair,  which takes two arguments.  The first  is an action, 
similar to twonums ,  that returns two numbers, and the second is the return action to 
be performed when writepair  is finished. 

wri tepai r :  ~ pair ret; 
pair ~ x y; 
wr i te  x; 
wr i te  y; 
ret. 

As would be expected, 242 338 is written on the screen by 

wr i tepa i r  twonums;  
te rm 

We can also define makepair, which takes two numbers, and return a pair similar 
to twonums.  

makepair :  -4 x y ret; 
ret ~ ret; 
ret x y. 

When makepair  is performed with 242, 338, and some action, it will perform the 
action with an argument  of ~ ret; ret 242 338, which is identical to twonums. 

Although this looks like sequence, it isn't, because the pair returned by makepair 
can be performed any number of times. 

Data structures 

By combining a conditional with an action that stores data, you get a conditional 
. . . .  ~ stores data. This can be used to build a data structure. 

Take as an example a linked list of numbers. There are two kinds of lists: empty 
lists, and non-empty lists. A non-empty list contains the f irst  number of the list, and 
another list, which is the rest of the list. 

In Io, a linked list is best represented as an action that takes two arguments. An 
empty list just performs its f irst  argument. A non-empty list performs its second 
argument ,  and gives it the first  number in the list, and the rest of  the list. 
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We can def ine  writel ist ,  which takes two arguments: a list and a return action. It 
writes all numbers  in the list, then performs its second (return) argument .  As 
descr ibed above, the parentheses notation is used for action arguments other than the 
last argument.  

writel ist:  -..> l ist ret; 
l ist (ret) 

f i r s t  rest; 
wr i te  f i rst ;  
writel ist  rest; 
ret. 

Here  are a few operators  for constructing linked lists. Note the similarity between 
makepair, above, and a p p e n d - t o - h e a d ,  below. 

empty:  -.> null ful l ;  
nul l .  

a p p e n d - t o - h e a d :  ~ num list ret; 
ret ..,.> null ful l ;  
ful l  num list. 

append:  ~ listO list1 ret; 
listO (ret list1) 

f irstO restO; 
append restO list1 --> restO; 
ret --> null ful l ;  
ful l  f irstO restO. 

append - to - ta i l :  ..-> l ist num ret; 
a p p e n d - t o - h e a d  num empty ..-> list1; 
append  l ist list1 ret.  

Performing 

append- to - ta i l  empty  1 --.~ list; 
append- to - ta i l  list 2 ---> list; 
append- to - ta i l  list 3 ~ list; 
wr i te l ist  list; 
te rm 

will show 1 2 3 on the screen. 

Binary trees 

Because  Io has no assignment statement,  it would seem very diff icul t  to insert a 
value into a binary tree. However, the solution is quite simple: create a new binary 
tree containing the new node. 

A binary tree has similar structure to a linked list. It is pe r fo rmed  with two 
arguments.  An empty tree, like an empty linked list, just  per forms  its f i rs t  argument.  

emptytree:  ~ null ful l ;  
nul l .  

A non-empty  tree will pe r form its second argument with the key, the data value, 
the left  subtree,  and the right subtree. 

The opera tor  search per forms its third argument  if the key is not in the tree, or 
its fourth argument ,  with the data value, if it is in the tree. 
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search: ~ tree key notf  found; 
tree (notf) 

k d left r ight;  
< key k (search left key notf  found); 
> key k (search r ight  key notf  found); 

found data. 

The operator ins (insert) takes a tree, a key, a new data value, and a return 
action. It returns a new tree, with the new data value inserted. 

ins: ~ tree key data ret; 
tree (ret ~ null full; 

ful l key data emptytree emptytree) 
k d left r ight;  

< key k (ins left key data -.-) left; 
ret ~ null full; 
full k d left right); 

> key k (ins r ight  key data ~ r ight;  
ret ~ null full; 
full k d left right); 

ret ~ null full; 
full k data left r ight.  

Coroutines 

Coroutines are an important concept of computing science, but few programming 
notations properly support them. It is surprising how easy they are to implement in 
Io. 

The idea of coroutines is to have two (or more) routines. When one of the 
routines gets to a point where it can no longer proceed (such as, when it needs more 
input), it is suspended, and another routine continues until it, in turn, can no longer 
continue (such as, when it has a value to output). Then, it is suspended and another 
routine is resumed. 

This is used, for example, in creating a stream. A stream carries a sequence of 
numbers,  without consuming storage. Therefore, it can be infinite. Even in the case 
of  a finite stream, though, it has an advantage over a linked list, because computa- 
tion can begin immediately after  the first number is known. 

The Io implementation of streams is analogous to linked lists. A stream takes two 
arguments.  If there is no more data in the stream, it performs its first argument.  
Otherwise, it performs the second argument, with a data value and the continuation 
of  the stream. 

Here we define the operator count-stream, and bind an infinite counting stream to 
the variable s. 

count-streamO: ~ x out; 
out  x ~ null out; 
+ x l ~ x ;  
count-streamO x out. 

count-stream: -..) ret; 
ret .-9 null full; 
count-streamO 0 full. 

count-stream ~ s 

S has exactly the same structure as a linked list. In fact, wri te l is t  s will write 0 1 
2 3 4 5... on the screen. 
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C o n c u r r e n c y  

Concurrency is achieved with the par operator, which takes two action arguments.  
It performs both actions simultaneously. 

Since there is no assignment to variables, there is no chance of conflict f rom 
improper use of  shared variables. On the other hand, there is no possibility of 
communication between the two actions. We need a facility for this. 

C o n c u r r e n t  c o m m u n i c a t i o n  

As mentioned earlier, the mechanism of performing an action is similar to 
concurrent  communication. Performing an action corresponds to sending a message, 
and an action that gets performed,  in a sense, receiving a message. 

The difference between synchronous communication, as Hoare describes in his 
CSP, and Io, is that if a process in CSP is not ready to receive, the sender must 
wait until the receiver becomes ready. In Io, the receiver is always ready. If more 
than one message is sent at the same time, then, in effect ,  multiple copies of the 
receiver are created. 

In the case where the receiver corresponds to a physical device that can only 
handle one request at a time (such as a disk drive), some facility is necessary to 
arbitrate,  and only let through one message at a time. 

This is accomplished in Io with the t han  built-in operator. Chan takes one argu- 
ment, to which it immediately returns two actions, known as the send and receive 
actions. 

When either the send action or receive action (but not both) is performed,  noth- 
ing happens until the opposite is also performed. But, when this happens, the argu- 
ment  to the send action is returned to the argument  of the receive action. Only one 
such pair is matched at a time. 

This gives us enough to implement write,  given an operator screenwri te ,  which 
takes a number  to write, a number for the cursor position, and an action to which it 
returns the new cursor position. In order to allow several different  processes to write 
numbers on the screen, so that they don't collide, we can define 

chan ~ wri te!  write?; 
wr i temon:  ~ cursor;  

wr i te? ~ x; 
screenwr i te  x cursor ~ cursor;  
w r i t emon  cursor. 

par (wr i temon 0); 
wr i te :  ~ x ret; 

par (wri te! x); 
ret. 

In cases where more data than a single number is to be transmitted,  an action 
containing data can be used as the argument to the send action. 

A note on implementat ion 

An important  consideration in any programming notation is how close the 
mechanisms are to the implementation platform. This is mistakenly known as the 
speed of the notation. 

For example, C was originally designed partly as a fancy assembler for the PDP- 
11. Mechanisms such as *p++ correspond exactly to PDP-I1 instructions. 
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Performing an action in Io is actually similar to a goto. However, passing an 
action as an argument  is similar to closure formation. In a naive implementation, a 
dynamic allocation would be necessary for every time an action was used as an 
argument.  However, even this is not too expensive, and garbage collection is not 
required.  

Because  Io is such a simple notation, the prospects for a very eff icient  implemen- 
tation are good, even without a complex compiler. 

It seems likely that a large proportion of  the time spent by a naive implementa- 
tion would be for the dynamic allocation. This can be greatly reduced by combining 
the space required for several (or many) closures into one dynamic allocation. 

It may also be possible to allocate some space in a stack, if the platform does 
this efficiently. 

Another important  optimization is to code some operators  in-line, rather than to 
code a goto or call to the operator.  This is particularly important for the built-in 
operators .  

With these and other optimizations, it should be possible to implement Io at least 
as eff ic ient ly  as other programming notations. 

Another intriguing possibility is the compilation of  Io programs directly to 
hardware. The idea of performing an action is probably best implemented with 
transition signalling. As a matter of  fact, the author got the idea for Io immediately 
after  reading Ivan Sutherland'sTuring Award Lecture  about transition signalling and 
micropipelines.  

Conclusion 

Io is a very simple programming notation. It turns out to be surprisingly powerful  
as well. Without using any built-in operators,  it is possible to construct boolean 
values, linked lists of  arbitrary type, numbers (implemented as a record of  boolean 
values), and binary trees of arbi trary type. In addition, still without any built-in 
operators ,  it is possible to traverse linked lists and trees, as well as implement 
coroutines.  This is not a bad track record for a programming notation with only one 
mechanism. 

With the addition of  built-in operators  for eff ic ient  implementation of  numbers ,  
input and output,  and concurrency and communication, Io becomes a practical 
general purpose notation. 

C.A.R. Hoare said, 'simplicity is the price one must pay for reliability.' Perhaps,  
with Io, simplicity is not such a high price after  all. 
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