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1 Background

The original Moog ladder filter remains a highly desirable building block for
electronic music, both in its original form and in the form of digital simulations.
There is now a considerable literature on characterizing the original filter and
on techniques for digital simulation.

In spite of advances, it is safe to say that there is not yet a definitive method
for simulating the Moog ladder filter.

The contribution of this paper is an extremely accurate, efficient, and simple
approach to the linear fragment of the problem.

The fundamental approach is to model the state as a vector, and the evolu-
tion of state as applying a transition matrix. These calculations lend themselves
especially well to evaluation on a microprocessor with SIMD extensions, as the
fundamental operation is a 4x4 matrix multiplication, which typically is a stan-
dard library operation and has an esepcially highly optimized implementation.

2 Review of the model

Under the linear assumption, the Moog ladder filter can accurately be modeled
as four one-pole lowpass filters in series, with a feedback loop. The gain of the
feedback loop controls the filter resonance.

Most approaches to digital simulation of the filter rely on discretization of
the analog one-pole filters, replacing each with a corresponding one-pole IIR.
However, the frequency and phase responses of such discretized filters do not
exactly match that of the original analog filters, especially as the cutoff frequency
becomes a nontrivial fraction of the sampling rate.

Under the linear assumption, the Moog ladder filter can be characterized by
coupled differential equations:

dy0/dt = α(y0 − x+ ky3)

dy1/dt = α(y1 − y0)
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dy2/dt = α(y2 − y1)

dy3/dt = α(y3 − y2)

Here, α is simply equal to Fc, the “cutoff” frequency, which corresponds to
the resonant peak for high values of k, or the frequency at which there is 12dB
attenuation in the k=0 case.

3 Approach of this paper

The state of the system is represented as a four-valued vector. The most basic
approach to solving these differential equations is Euler integration. For very
small values of α, or for small step sizes, the simulation is accurate. But at large
values, integration errors become nontrivial. One approach would be to use a
more sophisticated integration approach, such as trapezoidal or Runge-Kutta.
Another is simply to divide time into finer steps. Both of these approaches add
complexity and computational cost.

Rather, we model the Euler integration as a matrix describing the transition
from one state of the 4-vector to the next.

To correctly take into account the input, we extend the state to a 5-vector
and assume that the x parameter will be constant for the duration of the inte-
gration. Thus, the transition matrix is 5x5.

The resulting matrix is:

A =


1 0 0 0 0

α∆t 1 − α∆t 0 0 −kα∆t
0 α∆t 1 − α∆t 0 0
0 0 α∆t 1 − α∆t 0
0 0 0 α∆t 1 − α∆t


Repeated transition of state can now be modeled as exponentiation of this

matrix. This is especially cheap for exponentiation by 2N – it can be accom-
plished by repeatedly squaring the matrix N times. In practice, values of N of
10 (1/1024 step size) yield accurate results across the range of filter parameters.

Now we can model the linear filter with arbitrarily low error. We model
the input process as ”sample and hold” of the input, with x(t) constant for the
entire sample period. We model the output process as simple sampling. This
potentially yields errors of up to 3dB attenuation at the Nyquist frequency, but
since this is a lowpass filter, such effects may be ignored. The filter resonant
frequency and sharpness (Q) are more important perceptually.

4 Experimental results

The results of implementing the above filter are shown in Figure 1. This figure
shows the frequency responses of the filter for 10 values of Fc, starting at 20kHz
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Figure 1: Frequency response at k = 3.9

and successively each an octave lower. The even spacing shows that the tuning
is very precise, and the consistent shape of the peak shows that resonance is
completely independent of frequency. There is a small amount of error at the
far right of the graph, but only significant at frequencies greater than 20kHz,
so insignificant audibly.

Note that frequencies extremely near the Nyquist limit are still stable and
accurate.

5 Extension to nonlinearity

The actual Moog ladder filter is not linear, but rather relies on differential pairs
of transistors, which have a transfer function shaped like the tanh function.
Huovilainen gave nonlinear differential equations that accurately capture the
circuit behavior (evaluation of these differential equations match detailed simu-
lation of the circuit schematic diagram with general purpose circuit simulators
such as SPICE).

The nonlinear equations are:

dy0/dt = α(tanh(y0) − tanh(x− ky3))

dy1/dt = α(tanh(y1) − tanh(y0))

dy2/dt = α(tanh(y2) − tanh(y1))
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dy3/dt = α(tanh(y3) − tanh(y2))

The general approach is to compute the same matrix as for the linear case,
but then to apply tanh() to each of the five inputs of the state. We modify the
kernel so that we compute a delta to the y state vector, rather than simply the
new value of y. The kernel is also modified so that the −ky3 contribution is
subtracted from the rightmost column, so it can be included under the tanh of
the x term.

The kernel is then:

C =


A00 − 1 A10 A20 A30 + kB0

A01 A11 − 1 A21 A31 + kB1

A02 A12 A22 − 1 A32 + kB2

A03 A13 A23 A33 + kB3 − 1


y +=B tanh(x− ky3) + C[tanh(y0) tanh(y1) tanh(y2) tanh(y3)]T

For the small-signal assumption, the resulting filter is clearly equivalent to
the linear variant. (note that the terminology has shifted a bit; the B of this
section is the bottom four entries of the left column of the A of last, and the A
of this section is the lower right 4x4 block of the A of last. I hope to fix this up
for the real publication paper)

Note that the nonlinearities can introduce aliasing. Oversampling is likely
the best technique for combatting this aliasing. Unlike the implementation
described in Huovilainen, however, the filter is not dependent on oversampling
in order to get correct tuning or frequency response.

Note also that all 5 tanh functions can be computed in parallel, as they
depend only on the last iteration of state, with no serial dependencies.

6 Conclusion

The implementation proposed in this paper is faster on modern processors, more
accurate (especially at higher cutoff frequencies), and simpler, not requiring ar-
bitrary tuning tables. We have presented both a linear version with an extremely
high degree of accuracy and a nonlinear version which accurately captures the
behavior of the original circuit.
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A Python code

As a more precise specification of the algorithm, here is Python code that im-
plements the linear case for arbitrary α and k, computing the impulse response.

import numpy as np

def reso(alpha, k, n = 16):
a = alpha / (1 << n)
na = 1 - a
A = np.matrix([[1, 0, 0, 0, 0],

[a, na, 0, 0, -k * a],
[0, a, na, 0, 0],
[0, 0, a, na, 0],
[0, 0, 0, a, na]])

for i in range(n):
A = A * A

# now crank the impulse response
B = A[1:, 0]
A = A[1:, 1:]
y = B

result = []
for i in range(65536 * 16):

result.append(y[3, 0])
y = A * y

return result
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